Pulsed Plasma Thrusters for Small Satellites

نویسنده

  • Peter Vallis Shaw
چکیده

Since the Russian launch of the Zond-2 satellite in 1964 there have been over fifty years of research dedicated to the understanding of the first electric propulsion device to be flown in space, the Pulsed Plasma Thruster. The Pulsed Plasma Thruster originates from the evolution of the vacuum arc switch, but due to its microsecond operation time, the internal dynamics and nature of operation have remained unclear. The Pulsed Plasma Thruster is generally cheap to manufacture and to operate, which keeps it a popular device to research within institutes worldwide and has contributed to its longevity. As a satellite propulsion device it has unique capabilities that other propulsion systems cannot provide. The thruster operates by accelerating plasma formed in the accelerating electrodes (or nozzle) in short discrete packets of thrust or impulse. The pulsed nature of the thruster means that between pulses energy can be stored in capacitors, ready for the next discharge. The storage of energy over time means the power draw is variable and is only dependant on the frequency that the system is pulsed at. This property of the thruster makes the Pulsed Plasma Thruster extremely versatile, allowing the thruster to perform both velocity correction and control manoeuvres and attitude control manoeuvres. The Pulsed Plasma Thruster is mechanically scalable but the performance of the thruster has been shown to depend linearly on the energy storage ability of the thruster’s capacitor. The work presented here covers two areas. Firstly is the critical analysis of the physical mechanisms that occur within a Pulsed Plasma Thruster through a review of literature, experimentation and the development of a high current plasma flow model. The second area is the design, development, manufacture and evaluation of the Pulsed Plasma Thruster for use on a nanosatellite platform known as the CubeSat. Several novel observations and contributions were made during the critical analysis of the physical mechanisms of the Pulsed Plasma Thruster. The most significant was realising how the erosion of the metal electrodes affected the overall discharge process. It is postulated that the expulsion of material from emission sites (or cathode spots), the ionisation of that material and the resulting freed electrons, create a pinched plasma column between the electrodes. It is postulated that the interaction of the electrode sheath region and the intersecting plasma column cause the current flow to become limited. This was then shown to affect the efficiency with which the stored energy of the capacitor was converted to energy to accelerate the plasma. Understanding this issue is key in improving future designs of the Pulsed Plasma Thruster. The observations and conclusions made during this work were put into practice to create an eight μPPT propulsion module for a 3U CubeSat. Initial results show that a μPPT with a specific impulse of 321s, an impulse bit of 0.56μNs and a mass bit of 0.17μg has been developed. The thruster was developed for two technology demonstration CubeSats. STRaND-1 is a joint collaboration between Surrey Space Centre and Surrey Satellite Technology Limited and UKUBE-1 is a joint collaboration between Surrey Space Centre and the UK Space Agency. Both CubeSats are scheduled for launch late 2011, early 2012. The propulsion module for the STRaND-1 CubeSat will be the first to provide full axis control and the first to provide electric propulsion on this class of satellite, showing the advantages of the Pulsed Plasma Thruster for Small Satellites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electric propulsion for satellites and spacecraft: established technologies and novel approaches

This contribution presents a short review of electric propulsion (EP) technologies for satellites and spacecraft. Electric thrusters, also termed ion or plasma thrusters, deliver a low thrust level compared to their chemical counterparts, but they offer significant advantages for in-space propulsion as energy is uncoupled to the propellant, therefore allowing for large energy densities. Althoug...

متن کامل

Electric propulsion for satellites and spacecraft: established technologies and novel approaches

This contribution presents a short review of electric propulsion (EP) technologies for satellites and spacecraft. Electric thrusters, also termed ion or plasma thrusters, deliver a low thrust level compared to their chemical counterparts, but they offer significant advantages for in-space propulsion as energy is uncoupled to the propellant, therefore allowing for large energy densities. Althoug...

متن کامل

Development of an Engineering Optimization Tool for Miniature Pulsed Plasma Thrusters

Pulsed Plasma Thrusters (PPT) are an established technology for compact thrust propulsion systems. Although PPT optimization has been performed previously it requires complex numerical codes. Although the scaling laws have been suggested they mainly applicable for large thrusters when edge effects can be neglected. A new 0D pulsed inductive acceleration model has been developed which links toge...

متن کامل

Preliminary Pulsed MPD Thruster Performance

A thrust stand was modified, and a primary calibration technique was developed to evaluate the performance of applied-field pulsed magnetoplasmadynamic thrusters (MPDTs) for 10 kW class solar electric orbit transfer vehicle (SEOTV) missions. The NASA Lewis Research Center (LeRC) 30 kW thrust stand was modified to accept high current pulses delivered to the MPDT. A pendulum system was developed ...

متن کامل

Pulsed Plasma Acceleration Using Powdered Propellant

Pulsed plasma thrusters (PPTs) are the simplest electric acceleration devices with solid propellant on satellites. In order to make their thrust performance higher and to feed propellant more effectively, we have been developing a new type PPT using powdered propellant. To estimate its thrust performance, we have made a test model thruster for comparing the thrust performances of PPTs with soli...

متن کامل

Title: Effect of Solute Mixing in the Liquid Propellant of a Pulsed Plasma Thruster Authors:

Sodium chloride or ammonia was dissolved in the water propellant of pulsed plasma thrusters to improve the performance. Pulsed plasma thrusters using liquid propellant utilize water as attractive alternative instead of Teflon. Water propellant enables the controlling propellant mass flow and leads high specific impulse. However, liquid propellant pulsed plasma thrusters have larger plasma resis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011